
Spherical shield geometry i s  adequate for  studying the contribution of 
nuclear reactions t o  the dose received by spacecraft occupants. Very h i  
energy incident protons produce i n  the shield an essent ia l ly  isotsopic v 
source proportional t o  the angle-integrated production cross section. P 
Cons w i t h  range too short  t o  penetrate the shield produce a yield dependent 
upon the current i n to  the shield, w i t h  the importance of cross sections at  
a given energy being dependent on the incident spectrum and the inverse 
of the stopping power. 
shield and stop i n  the p i lo t ,  and so are important for primary rather than 
fo r  secondary dose. If the shield is not too thick, the secondary dose 
inside the cavity i s  rather independent of posit ion i n  both the high- and 
low-incident energy limits. Therefore, calculations can be made f o r  the 
dose a t  the center of the  sphere, where the secondary flux from an 
isotropic  primary f lux  i s  equal t o  that obtained i n  a modified s t ra ight -  
ahead approximation f o r  monodirectional primary protons incident on a slab. 

Widely available intranuclear cascade-plus-evaporation calculations 
give secondary nucleon cross sections which agree f a i r l y  w e l l  
ments using incident  protons. New data i s  presented to i l l u s  
the present model has some limited va l id i ty  even for  inc 
energies as l o w  as 20 MeV. Calculat imgl  models are  not 
yielded generally val id  cross sections for  secondary gamma rays or for 

g secondary neutrons from alpha par t ic les .  

,= 

Protons of intermediate energy penetrate the  
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I. THE INFLUENCE OF SPACECMFT GEOMETRY ON THE RELATIVE 

IMPORTANCE OF NUCLEAR SECONDARY CROSS SECTIONS 

When we wish t o  t h i n k  i n  a simple way about the influence of secondary 

nuclear radiations on the shield design of a spacecraft, we can think of 

the cabin as a one-dimensional sphere w i t h  the p i l o t  conveniently huddled 

i n  the center as i l l u s t r a t ed  i n  Fig. 1. The incident protons and alpha 

par t ic les ,  averaged over the f l igh t ,  are assumed t o  be isotropic  i n  the  

absence of the vehicle. We a re  concerned with any influence t h a t  nuclear 

reactions i n  the shield may have on the  dose t o  the  p i lo t .  The shield i s  

th in  enough, i n  terms of the interact ion length of the secondary neutrons 

and gamma rays, that multiple collisions cannot dominate. We are also 

concerned with how the reactions of primary (or secondary) pa r t i c l e s  i n  

the p i l o t  may a f f ec t  him. This discussion aims t o  help c l a r i f y  which 

cross sections are important. 

The sphere geometry seems crude, but it i s  adequate f o r  the present 

purpose. The broad angular d i s t r ibu t ion  of secondary radiations allows us 

a simple shield representation even f o r  cases that seem t o  demand great 

geometric complexity f o r  estimation of the  dose from degraded primaries. 

If we ever become ready t o  abandon our sphere, a t  worst only a f e w  simply 

shaped shield regions w i l l  be needed. (Pathlengths through the various 

gross regions may be preserved from primary dose calculations t o  allow good 

secondary source strength estimations. ) On the other hand, precise nuclear 

calculations w i l l  be needed f o r  the simpler geometries so that we w i l l  not 

be misguided about complex multiple-collision e f f ec t s  o r  the influence of 

detai led spectra. 



-5 - 

ORNL- DWG 67- 5874 

- 
J \ 

Fig. 1. An Adequate Geometry to Represent a Spacecraft Cabin for 
Studying the Effects of Nuclear Secondaries. 
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I . .  

How can we decide whether a primary proton of given energy E w i l l  

damage the p i lo t  d i rec t ly  o r  by way of secondary par t ic les?  The relat ion 

of shield thickness t o  incident-particle range distinguishes three cases: 

a )  Primaries so energetic t h a t  they pass completely through the cabin 

and i t s  occupants lose l i t t l e  enough energy i n  t h e i r  odntinuous slowing- 

down process t h a t  secondary reactions can w e l l  compete. The slow energy 

dependence of the relevant cross sections implies tha t  there i s  produced 

i n  t h i s  case an isotropic volume source of secondaries throughout the  shield, 

independent of the  angle variations of the  d i f f e ren t i a l  cross sections.  

Ignoring d e t a i l s  of secondary pa r t i c l e  type and energy spectrum, the 

strength (cmi3) of t h i s  volume source V i s  

where @ ( E )  i s  the incident f lux integrated over a l l  sol id  angle, and C is  

the macroscopic cross section a t  energy E f o r  production of the  secondaries 

being considered. C includes the mult ipl ic i ty .  

b )  Less energetic primaries which penetrate the  shield but stop i n  'the 

p i l o t  contribute the dominant share of the primary dose, so secondaries i n  

t h i s  case a r e  re la t ive ly  unimportant. 

about proton energies between 70 and 200 MeV). 

the  temptation should be overwhelming t o  t r e a t  secondary production by these 

(For a 5-g/c* shield we a r e  talking 

For simplified calculations 

primaries as i f  Eq. (1) were val id .  

c )  Low-energy charged primaries cannot penetrate the shield, but t h e i r  

secondary neutrons and gamma rays can. 

i n to  the spacecraft skin produces a surface secondary source of strength 

The current of low-energy par t ic les  
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S (cm'2 ) given by 

me stopping power enters  i n  the denominator because t o  find the yield one 

must integrate over the path of each primary from i t s  or ig ina l  energy down 

t o  zero. Unlike the volume source produced by the  high-energy primaries, 

the surface source strength usually has an angular d i s t r ibu t ion  re la t ive  t o  

the shield normal. Equation (2 )  is  i n  the proper form if  input data  is  t o  

be cas t  as thick-target yields  f o r  stopping a primary of energy E'. 

order of integration i s  reversed t o  employ the cross qection a t  a, given 

energy and the  in tegra l  f lux  A# (E)  up t o  the cutoff Ec a t  which the range 

equals the shield thickness; that is, 

The 

i 

= J-J: dE !(E) Ali(E)  
dE dx 

I think t h a t  plausible assessment of the importance of t h i s  surface 

source of gamma rays and neutrons i s  the most obviously unsolved problem i n  

space shielding. 

Integrated preliminary data  of Zobel, Maienschein, and Scroggs suggest 

t ha t  the gamma-ray production cross section f o r  incident protons on 

aluminum behaves with energy between 15 and 150 MeV almost l i k e  the  proton 

stopping power, allowing a quick estimation of the secondary surface source 

using Eq. (2). The resu l t  i s  t h a t  the surface source of gamma rays produced 

We can already say something i n  the  case of gamma rays. 
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i n  aluminum would be about 2 x times the incident proton energy current 

in to  t h e  shield ( less  -15 MeV/proton). 

soft ,  i . e . ,  f o r  a r ig id i ty  parameter l e s s  than 50 megavolts, it appears 

that the gamma rays might contribute s ignif icant ly  f o r  shields greater  than 

10 g/c# thick.  

a s ignif icant  contribution. Neutron production cross sections behave d i f -  

ferent ly  with energy, so a less stringent rule probably applies.  

With flare spectra which a re  qui te  

For harder f l a r e  spectra, aluminum gamma rays cannot produce 

Now l e t  us re turn  t o  our sphere model. You may question whether it 

was fair f o r  me t o  draw the man i n  the center.  Does the sphere integrate  

so well t ha t  t h i s  i s  a good approximation? I have i n  Fig. 2 a rough answer 

f o r  the case of an isotropic volume source within the shield.  The secondary 

flux a t  a point i n  the in t e r io r  is  estimated as a function of r ad ia l  posit ion 

f o r  a sphere 5$ as thick as i t s  radius (t/a = 0.05). 

of secondaries the f lux r i s e s  w i t h  radius t o  20$ above the  cent ra l  value at  

2/3 the capsule radius and t o  about 55$ above a t  0.9. 

t i o n  (no sca t te r ing)  is  introduced t o  the extent of ‘Zst mean f r ee  paths along 

the rad ia l  direction, the d is t r ibu t ion  becomes f latter.  For present purposes 

With no attenuation 

A s  secondary attenua- 

it seems jus t  barely fair t o  c a l l  the cent ra l  point representative. A t  the  

sphere center the secondary f lux is  

F = vt[1 - exp(-Cst)]/Cst - ( 3  1 

Equation ( 3 )  reduces t o  F = V t  f o r  small Cst ,  and t o  F E V/Cs f o r  large Cs t .  

This is  the same estimate one would obtain i n  the straightahead approxima- 

tion! 

the spherical  s h e l l  i n  an isotropic flux, viewed at the sphere center, gives 

the same numerical r e su l t  as the same approximation gives for a slab of 

ks stated by Wallace et  al.,” the straightahead approximation f o r  
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macroscopic cross section f o r  the  secondary radiation. 

Zs i s  the 
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t h e  same thickness w i t h  normally incident (not i so t ropic)  f lux.  

tha t  the volume source strength V has an energy spectrum but contains only 

Recall 

the  angle-integrated d i f f e ren t i a l  cross sections. 

A s i m i l a r  approach was made t o  the problem of secondaries from the low- 

energy primaries which cannot penetrate the shield.  

than the f lux i s  important, so the surface source strength i s  a function of 

The current ra ther  

angle unless the cross sections f o r  secondary production are isotropic .  

Using the (assumed i so t ropic)  in tegra l  primary flux A@ 

the  contribution t o  the angle-differential  surface source strength (cm? 

sr” Mer1) f r o m  the d i f f e ren t i a l  macroscopic cross sections X(E,a) i s  

i defined i n  Eq. (2a), 

where p and Y are respectively the angles re la t ive  t o  t h e  shield normal of 

t h e  primary and secondary par t ic les ,  and Q is  the angle between the two 

par t ic les .  For a detector- a t  the center of the sphere, y = 0 and @ = a, 

and the angular d i s t r ibu t ions  as expected occur weighted by the cosine of 

the scat ter ing angle. When the  d i f f e ren t i a l  cross section i s  expressed i n  

a Legendre expansion w i t h  coeff ic ients  C (E), i .e. ,  a 

the  in tegra l  i n  Eq. ( 5 )  may be performed t o  give the  d i f f e r e n t i a l  surface 

source : 
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The As's may be obtained by applying the addition theorem for  spherical  

harmonics t o  Eq. ( 4 )  using the  expansion ( 5 ) .  The result ing in tegra l  i s  

known,= leading t o  the resu l t s  tabulated below. 

0 1 3,5,7, * 0 

1 2/3 4 -1/24 

-1 

The expression (6)  f o r  S(E,Y) leads t o  prediction of the  r ad ia l  

dependence of the secondary flux within the cavity, i l l u s t r a t ed  i n  Fig. 3 .  

Again it seems provisionally adequate t o  confine a t ten t ion  t o  the center 

of the sphere. If we ignore the d e t a i l  t h a t - a l l  secondaries are not pro- 

duced ju s t  on the skin, the flux a t  the center i s  given by 

F = 4 n : e  S(E,O) dE 

This i s  the resu l t  which would be given by the  straightahead approximation 

using modified production cross sections equal t o  r ; l  AaZA ra ther  than the 1' 

a 
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Fig. 3. In t e r io r  Flux as a Function of Radius f o r  a Spherical 
Surface Source Produced by Secondaries from Stopped Charged Part ic les .  
The contributions from the f irst  three Legendre coeff ic ients  of the 
d i f f e ren t i a l  yield are shown f o r  two values of the normal attenuation 
thickness Z s t .  



-13- 

customary C Again t h i s  time, by using t h e  modified cross section, t h e  

spherical  problem may be adequately transformed t o  a slab problem w i t h  

normally incident f lux .  

0' 

b 

To summarize, it appears t h a t  our cabin can revert  from sphere t o  slab, 

t h a t  high-energy cross sections are important i n  a form integrated over angle 

and weighted by t h e  d i f f e r e n t i a l  primary flux, and t h a t  low-energy cross 

sections are important integrated over angle, w i t h  roughly a  COS^ weighting, 

and weighted by t h e  in tegra l  f lux  over the stopping power. 

11. CROSS SECTIOES FOR SECONIXRY NUCLEON PRODUCTION 

Now consider what knowledge of nuclear cross sections has been made 

readily applicable t o  shield design. Generally, it seems preferable t o  

use computed cross sections o r  interpolations among them, since experiments 

have not produced r e su l t s  at  suf f ic ien t ly  regular energy and angle intervals .  

This approach i s  now workable f o r  neutrons (or protons) produced by incident 

protons from a t  l e a s t  800 MeV down t o  some nebulous threshold below 100 MeV. 

By contrast, there i s  yet l i t t l e  val id  guidance from calculations on how 

t o  handle neutrons produced by alpha par t ic les .  

Every serious shielding e f fo r t  I have read tr ies t o  use nucleon-nucleus 

cross sections based upon the intranuclear cascade model r e su l t s  of 

bThose who have codes i n  slab geometry which operate w i t h  i sotropic  
incident fluxes and which already contain information on the energy spectra 
of secondary par t ic les  may w i s h  t o  consider ube of the  normal emission 
approximation, i n  which a l l  secondaries penetrate the shield along the  
shortest  path. 
high-energy l i m i t ,  and a t  low energies yields  the appropriate r e su l t  w i t h -  
out the use of modified cross sections. 
not transform properly for t he  primary flux, however. ) 

This approximation does fairly w e l l  conceptually i n  the 

(Isotropic flux on a slab does 
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Metropolis e t  a i .*  o r  the more recent ones of Bertini  e t  a l S r 5  though 

several other  similar computations have been made. Ber t in i ' s  are now 

available i n  f i t t e d  f o d  and on magnetic tape.7 These Monte Carlo estima- 

t i o n  procedures a re  based on the  idea that ,  f o r  incident nucleons above 

perhaps 100 MeV, interact ions with the nucleus a re  dominated by sequential 

microscopic two-body nucleon-nucleon scat ter ing events f o r  which free- 

pa r t i c l e  cross sections apply. The resul t ing estimated cross sections a re  

slow functions of angle, incident energy, and t a rge t  mass, a s  a re  experi- 

mentally observed cross sections.  

sections a t  10, 30, and 45 deg f o r  160-MeV protons on aluminum. The broad 

peak a t  the high-energy end of each spectrum a'loves with angle almost as it 

would f o r  bil l iard-ball .  cross sections.  .This peak i s  a re f lec t ion  of the 

use of f ree-par t ic le  kinematics f o r  the microevents, blurred by the  momentum 

dis t r ibu t ion  assigned t o  t a rge t  nucleons and by the occurrence of i n t r a -  

nuclear cascades. I have superposed a predicted cross section for Bi a t  

160 MeV and an appropriately scaled one f o r  Fe a t  60 MeV t o  show how 

invariant i s  the  predicted d i f f e ren t i a l  cross section. 

Figure 4 shows sample d i f f e r e n t i a l  cross 

Each intranuclear cascade Monte Carlo history i s  terminated when no 

pa r t i c l e  has enough energy inside the model nuclear po ten t ia l  t o  leave the 

nucleus w i t h  more than a specified (low) cutoff energy. 

exci ta t ion energy can be very large; f o r  example, the  average exci ta t ion 

energy ranges from 35 t o  110 MeV for incident 50- t o  400-MeV-nucleons on a 

heavy nucleus l i k e  tantalum. 

by assuming tha t  nucleons and heavier fragments "boil  off' ' i n  variable 

The residual  

This exci ta t ion energy is  usually handled 

evaporation chain processes similar t o  t ha t  described and programmed i n  

Monte Carlo by Dostrovsky e t  a1.8 

high (presumably) isotropic  contribution a t  low energies which i s  not 

Th i s  evaporation process produces a 
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iron has been stretched t o  preserve constant area. 

The cross section fo r  61-MeV protons on 
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included i n  Fig. 4. Est imated cross sections f o r  neutrons look very 

similar t o  this figure except that the predicted ( largely unmeasured) 

quasifree scat ter ing peaks are l e s s  pronounced, and except that for heavy 

elements t h e  predicted evaporation yields  are qui te  high. 

How val id  are the cross sections obtained from the  cascade model? 

They a re  remarkably so, though as an experimentalist I enjoy dwelling on 

residual d i f f i c u l t i e s .  For instance, though the  works of Wall and Roos’ and 

of Genin e t  a1.l’ support the marked quasifree peak i n  the  45 deg region, 

our work,” the  recent r e su l t s  of Brun e t  a1 l2 and perhaps the 185-m~ 

data of Dahlgren’” a l l  tend t o  require that quasifree scat ter ing be less 

apparent. Figure 5 shows that a t  60 deg Bertini  predicts  cross sections 

f o r  160-bv protons on A 1  which are i n  accord (on an absolute basis, no 

f r ee  parameters) w i t h  the experiments of Wachter e t  al.14 and myself” but 

not qui te  with those of Roos and Wall.’ 

been studied by B o ~ e n ’ ~  at  forward angles, where they charac te r i s t ica l ly  

-*’ 

fieutrons from 1 b - M e V  protons have 

disagree w i t h  calculation i n  the  manner shown i n  Fig. 6; the  predicted peak 

i s  always too intense and the t a i l  too weak, though the  s i tua t ion  does vary 

a l i t t l e  with ta rge t  mass number. 

Bertini  has recently shown re su l t s  from a new program which includes meson 

production.16 

with the experiment of Azhgirey e t  

cross-section parameters are yet  subject t o  improvement. 

For a comparison a t  higher energy, 

Figure 7 compares h i s  estimates f o r  660-MeV protons on Cu 

The new code i s  f i n a l  but the 

Since I have emphasized cross sections integrated over angle, I would 

l i k e  t o  encourage comparisons on that basis .  

of Brun  e t  al.,” i l l u s t r a t e s  t h a t  cascade calculations can give f i t s  within 

2 6  t o  angle-integrated spectra f o r  156-MeV protons on s i lve r .  

Figure 8, from the Orsay work 
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Fig. 6. Colnparison of the Bertini  Intranuclear Cascade Calculation 
Against Experiment fo r  Secondary Neutrons a t  2 deg from 143-MeV Protons 
on Lead. 
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The cascade model w a s  or iginal ly  intended fo r  use with rather  high 

incident energies, 

which are ap t  t o  be important fo r  secondary production? 

What should be used for  calculations on the s o f t  flares 

Figure 9 shows 

some recent data of Bertrand e t  a1.l’ a t  30 deg f o r  incident 60-MeV protons 

on s4Fe. Below the region of marked group s t ructure  the Bertini  model f i t s  

well, except t ha t  the evaporation proton yield from the associated t r e a t -  

ment of nucleon evaporation i s  twice too large.  (I refuse t o  show the 

20-deg data, which f i t s  perfectly i n  the high-energy region.) The poor 

f i t  i n  the evaporation region i s  sensi t ive t o  nuclear d e t a i l s  - t h e  predicted 

spectrum f o r  “Fe f i t s  the data! 

cross section a t  the higher enepgies i s  about 1/10 of the proton cross 

section, though emerging deuterons cannot be predicted by the present 

cascade model. 

In  a l l  these measurements the deuteron 

Deuterons and heavier par t ic les  are  predicted t o  compete 

i n  the evaporation process, and Fig. 10 a t  60 deg f o r  the same target  and 

energy includes comparisons f o r  f ive  pa r t i c l e  types. 

shows a l e s s  favorable comparison with calculation; the predicted cross 

section does not hold up well a t  energies over 40 MeV. In these f igures  

the experimental data are shown as a smooth curve below the near-elastic 

For protons t h i s  case 

region, though they were obtained i n  a thousand individual channels. I n  the 

smoothed regions the data have been shown t o  be s t a t i s t i c a l l y  consistent 

with a smooth curve. Figures 11 and I 2  show similar comparisons f o r  61-MeV 

protons on B i .  A t  30 deg the calculation f i ts  the proton cross sections 

only a t  high energies; a t  60 deg there i s  no agreement. The failure of 

the  model t o  predict  a reasonably shaped spectrum for  B i  may be related 

t o  the  model’s neglect of f i s s ion .  
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When t h i s  work i s  completed we should have some picture of the va l id i ty  

of the cascade model f o r  incident 60-MeV protons and emerging charged 

par t ic les ,  with some few runs f o r  incident 40-MeV protons and some f o r  

alpha par t ic les .  The 40-MeV proton data shows continuum regions similar 

t o  those at  60 MeV, but of course it becomes harder and harder t o  ignore 

t h e  excitation of de f in i t e  f i n a l  s ta tes .  

s t a n t i a l  numbers of energetic secondary protons. Because of the importance 

of chargediparticle reactions i n  dose calculations when the qual i ty  fac tor  

Alpha par t ic les  do give sub- 

is  given consideration, we w i l l  t r y  t o  get  data on C and 0 ta ree ts .  

The lower energy l i m i t  f o r  intranuclear cascade calculations can be 

pressed even more by looking a t  the new cross sections of Verbinski and 

Burru~’~ a t  15 t o  18 MeV f o r  (p,n) reactions on several  elements. The 

observed cross sections for  elements as heairy as Fe show energy group 

s t ructure  and a t  the higher energies a def in i te  angular dis t r ibut ion.  

Figure 13 shows the cross sections a7Al(p,n) integrated over sol id  

angle. 

with a Monte Carlo evaporation theory of the Dostrovskp type and w i t h  the  

I have shown f o r  each of two energies a comparison of experiment 

cascade plus evaporation theory of Bertini .  The evaporation-only calculations 

assume t h a t  a l l  the incident energy i s  absorbed in to  a compound nucleus with 

an a rb i t ra ry  500-mb reaction cross section. Though imperfect, the  Bert ini .  

estimate is  the be t t e r  though he i s  s l igh t ly  shocked by our use of his  

program a t  these energies. Whether the agreement i s  satisfactory,  and 

whether it can easily be iqproved upon, await fur ther  analysis. 

two problems other than the residual shape e r ro r  a r i s e  i n  routinely applying 

A t  least 

the  presently available cascade programs t o  t h i s  energy range. 

culated and observed spectra have high-energy end-points quite out of l i n e  

when the (p,n) &-value is  far d i f fe ren t  from the zero estimate made i n  Bertini’s 

The ca l -  
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cascade program. This effect  is apparent i n  Fig. 13. Also, as emphasized 

i n  Fig. 14 f o r  "Ca, the cutoff energy which customarily terminates the 

model cascade reactions produces a nonphysical kink i n  the  predicted energy 

distributions.  Lowering the cutoff from 6.6 t o  2 MeV improved the  behavior 

of the spectrum but markedly increased the computer running time. 

evaporation-only model gives the  same shape as the low-energy data shown 

f o r  the 6.6-~ev cutoff, but 25$ more intense i f  the  same nonelastic cross 

section is used. 

The 

I have l i t t l e  t o  report on neutron production by alpha particles,  

except t o  observe t h a t  i n  t he  case of the 'Be(a,n) reaction the cross section 

i s  large, between 400 and TOO mb f o r  alpha par t ic les  between 5 and 10 MeV, 

and the energy spectrum does not much resemble an evaporation spectrum. 

This integrated cross section i s  a s  large as the geometrical cross section 

of sulphur, and i f  it remains so large a t  higher energies it would imply 

that  about 4% of the 60-MeV alpha par t ic les  stopping i n  a Be shield would 

produce neutrons. Figure 15 i l l u s t r a t e s  the angle-integrated neujxon spectra 

obtained by Verbinski2' for two incident energies, i l l u s t r a t ing  that even a t  

low resolution there is  def ini te  character t o  the spectra. 

t r ibut ions are also marked. 

data from experiment. 

The angular dis-  

It may always be necessary t o  take this type of 

111. CROSS SECTIONS FOR SECONDARY GAMMA RAYS 

Finally there i s  the problem of secondary gamma rays. A s  I indicated 

earlier, conclusions await the implications of the spectra that Zobel, 

Maienschein, and Scroggsl have obtained a t  incident energies from 14 t o  

160 MeV, and the developing info-rmation concerning the Zntensity of s o f t  
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flares. 

to remind us that such gamma rays are real. 

Figure 16, showing gamma rays from 33-MeV protons on I$O, serves 

IV . CONCLUSIONS 
To summarize, I believe our course should be to use the cascade plus 

evaporation data, made widely available by Bertini et al., at even very 

low energies. 

system with a type of cross-section system more suitable for the lower 

energies, 

helium ions and for secondary gamma rays. 

We must however search for an effective way to join this 

We must devise suitable cross-section estimators for incident 

Once the energies of incident particles become so low that their 

ranges are short compared to shield thicknesses and to the attenuation 

Lengths of secondaries, precalculated secondary yields as a function of 

incident energy would be helpful to shield computations. 

of spacecraft geometry should not inhibit ever-improving estimations of 

The difficulties 

secondary effects based on the simplest geometries. Finally, in considering 

secondaries, soft flares must receive the main attention. 
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